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SUMMARY

Combining mesh-less �nite di�erence method and least square approximation, a new numerical model is
developed for water wave propagation model in two horizontal dimensions. In the numerical formulation
of the method, the approximation of the unknown functions and their derivatives are constructed on
a set of nodes in a local circular-shaped region. The Boussinesq equations studied in this paper is
a fully nonlinear and highly dispersive model, which is composed of the exact boundary conditions
and the truncated series expansion solution of the Laplace equation. The resultant system involves a
sparse, unsymmetrical matrix to be solved at each time step of the simulation. Matrix solutions are
studied to reduce the computing resource requirements and improve the e�ciency and accuracy. The
convergence properties of the present numerical method are investigated. Preliminary veri�cations are
given for nonlinear wave shoaling problems; the numerical results agree well with experimental data
available in the literature. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decades, mesh-less or mesh-free methods have attracted great attention in the �eld
of computational mechanics, e.g. References [1, 2] and references therein. Apart from the
studies in this �eld, applications of mesh-free methods in the area of geophysics and coastal
engineering are some of the promising extensions. For example, Reference [3] introduced the
mesh-less Galerkin method in hydraulics, where the stationary, shallow water �ows in rivers
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were simulated. Most modelling of free surface �ows in the region of estuaries, coastal waters
and seas, including tidal waves, sediment processes, environmental hydraulics and physical
oceanography, etc. concern complex geometric boundaries. The design of numerical methods
to solve the associated partial di�erential equations must take into account the geometrical
complexities of the physical region. However, it is a di�cult task to handle �ows with complex
boundaries e�ectively and e�ciently.
Predicting the wave climates of large, near-shore regions of irregularly shaped shorelines,

such as harbours, bays and tidal inlets, is one of the major problems in coastal engineering.
As one of the phase resolving methods, the Boussinesq models are widely used. The classi-
cal Boussinesq theory provides a set of evolution equations for surface water waves in the
combined limit of weak nonlinearity and weak dispersion, which measure the wave height to
water depth ratio and water depth to wavelength ratio, respectively. Recent development of
the Boussinesq wave models fall into two categories. One is the improvement of the model
to treat a great number of nonlinear phenomenon, such as wave energy transfer and sideband
instability of water waves. The other one is the improvement of the dispersion characteristics
allowing the model to treat propagation of waves in a larger range of deep-water depths.
More details are given in the review papers [4] and [5], and references therein. In the last
decades, most Boussinesq wave models were solved with the �nite di�erence method on
Cartesian mesh. Di�culties are encountered when curved shorelines or man-made construc-
tions such as wave-breakers are considered. To satisfy local resolution requirements, uniform
grid spacing may become too expensive to be used in large near-shore regions. The nested
mesh technique could partially handle these resolution di�culties. However, the stair-stepped
boundaries associated with rectangular grids may cause the spurious scattering of waves from
each of the corners and decrease the computational accuracy [6]. It does not seem possible
for this di�culty to be removed due to the essential characteristic of the rectangular mesh.
To remedy this di�culty, a curvilinear grid method with �nite di�erence discretization can

be used. This method is widely used in numerical modelling of large-scale oceanographic
problems involving the nonlinear shallow water equations. However, the application of curvi-
linearized mesh method to Boussinesq models is rather limited in the literature. One of the
main reasons is the di�culty in treating the high order (at least 3rd order, even up to 5th
order) derivative terms contained in the Boussinesq equations. An example of the use of
a curvilinear grid system to solve the Boussinesq-type equations is given in Reference [7],
where solitary wave scattering by a vertical cylinder was studied. Reference [6] rewrote the
Boussinesq models in curvilinear coordinates based on a mapping method. A feature of the
mapping method is that the calculations involve the use of the Jacobian. If the mapping is
nearly singular at one point of the region, the Jacobian will be close to zero with a correspond-
ing lack of accuracy. In spite of these drawbacks, solving the equations with a curvilinear
mesh dose signi�cantly extend the application range towards engineering practices.
Apart from the curvilinear grid method, mesh-less numerical methods seem appropriate

for solving the Boussinesq equations in the computational domain with complex boundaries.
The most important advantage of this method lies in the �exibility of treating the complex
boundary. Another one of the key advantages is the ease of adding and subtracting nodes in
the existing node system, which provides much more �exibility for the local grid re�nement.
In the numerical formulation of mesh-free methods, the approximation of the unknown

functions or its derivatives is constructed on a set of nodes in a local circular-shaped region.
To achieve the same order of accuracy as the �nite di�erence method on a Cartesian mesh,
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more nodes are needed. Consequently, the bandwidth of the sparse matrix discretized from the
PDEs is slightly expanded, resulting in the unavoidable decrease in computational e�ciency.
In this regard, the mesh-free methods achieve geometric �exibility at the cost of computational
e�ciency. For large-scale problems, the numerical cost becomes a di�culty and needs to be
considered. However, many novel techniques have been designed to treat this problem. For
example, the combination of the general �nite di�erence method (usually in a mesh-less node
system) and the conventional di�erence method (usually in a Cartesian mesh) could improve
the computational e�ciency signi�cantly [8]. Along another track, following [9], a completely
matrix-free, approximate moving least square algorithm employed the theory of approximations
has been developed [10]. This work can dramatically reduce the computational e�ort for the
mesh-less methods.
The aim of the present work is to develop an easy-to-use numerical wave tank for the

coastal engineering practice. In this paper, the fully nonlinear and highly dispersive Boussinesq
equations are solved, incorporating a least squares-based �nite di�erence method. In Section 2,
the Boussinesq theory involving exact boundary conditions and a truncated series expansion
solution of the Laplace equation is presented. Combining the generalized �nite di�erence
method with the least squares approximation, the �nite di�erence method is improved from
the one studied by [11]. In the original work, the selection of proper nodes around a centre
point was a complicated process. To simplify this manipulation, the least square approximation
is taken to replace the Gauss–Jordan algorithm used in Reference [11]. At the same time, less
information about the node-to-node connection is needed with the least square approximation.
The formulation and the numerical implementation are presented in Section 3. In Section 4, the
performance of the numerical method is analysed for both the linear and nonlinear problems.
As a preliminary application, comparisons between the numerical results and experimental
data for nonlinear wave shoaling combined with refraction and di�raction are carried out.
Concluding remarks are made in Section 5.

2. BOUSSINESQ EQUATIONS

The Boussinesq equations used in this paper follow the work in References [12–14], where
the fully nonlinear and highly dispersive Boussinesq model has been developed and proved
to be valid and e�ective. Consider the �ow of an incompressible, inviscid �uid with a free
surface. A Cartesian coordinate system is adopted, with the x- and y-axis located on the
still-water plane, and the z-axis pointing vertically up-wards. The �uid domain is bounded
by the seabed at z=−h(x; y), and the free surface at z= �(x; y; t), where t is the time. The
kinematic and dynamic free surface conditions are

@�
@t
=(1 +∇� · ∇�)w̃ − Ũ · ∇� (1)

@Ũ
@t
=−g∇�− ∇

(
Ũ · Ũ
2

− w̃2

2
(1 +∇� · ∇�)

)
(2)

where

Ũ= 〈Ũ ; Ṽ 〉= ũ+ w̃∇� (3)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:213–235



216 B. WANG AND H. LIU

Here ũ= 〈ũ; ṽ〉 and w̃ are the horizontal and vertical velocities evaluated at the free surface,
g=9:81 m=s2 is the gravitational acceleration, and ∇ is the horizontal gradient operator i.e.
∇= 〈@=@x; @=@y〉. The kinematic condition on the bottom reads as

wb +∇h · ub=0; z=−h(x; y) (4)

The present method applies a truncated, Pad�e-enhanced Taylor series expansion of the
velocity potential about an arbitrary level z= ẑ in the �uid layer. To close the problem, the
vertical distribution of the �uid velocity is approximated by

u(x; y; z; t)= (1− �∇2)û(x; y; t) + ((z − ẑ)∇ − �∇3)ŵ(x; y; t) (5)

w(x; y; z; t)= (1− �∇2)ŵ(x; y; t)− ((z − ẑ)∇ − �∇3)û(x; y; t) (6)

where

�=
(z − ẑ)2
2

− ẑ2

10
; �=

(z − ẑ)3
6

− ẑ2(z − ẑ)
10

(7)

In Equations (5) and (6) the quantities û and ŵ are utility variables which have been
introduced for the approximate solution of the Laplace equation. We denote Boussinesq formu-
lations for Equations (5) and (6). With the Boussinesq formulation, the velocity
components at the free surface and bottom could be easily obtained by substituting z= � and
z=−h. Inserting the Boussinesq formulation Equations (5) and (6) into the bottom boundary
condition Equation (4) gives the following expression for the kinematic bottom condition,
which relates the utility velocity variables û and ŵ to each other

(1− 2
5 �

2∇2)ŵ + (�∇ − 1
15 �

3∇3)û+∇h · [(1− c�2∇2)û − (�∇ − s�3∇3)ŵ]= 0 (8)

where �= h+ ẑ. Here, coe�cients of the slope terms have been modi�ed through numerical
optimization with respect to the linear shoaling gradient and the optimized coe�cients are
c=0:605 and s=0:016 for kh6 10. Combining the de�nition of Ũ (Equation (3)) and the
bottom boundary condition Equation (8) results in the following linear system:

M(û v̂ ŵ)T = (Ũ Ṽ 0)T (9)

where

M=

⎛⎜⎜⎝
A11 − �xB11 A2 − �xB12 B11 + �xA1

A2 − �yB11 A22 − �yB12 B12 + �yA1

hxC11 + hyC21 +A01 hxC12 + hyC22 +A02 B0 − (hxC13 + hyC23)

⎞⎟⎟⎠
Here, the subscripts x and y denote partial di�erentiation. Applying the Boussinesq formulas
Equations (5) and (6), the operators read:

A11 = 1− � @
2

@x2
; A2 =−� @2

@x@y
; A22 = 1− � @

2

@y2
; A1 = 1− �

(
@2

@x2
+
@2

@y2

)

B11 = (�− ẑ) @
@x

− �
(
@3

@x3
+

@3

@x@y2

)
; B12 = (�− ẑ) @

@y
− �

(
@3

@y3
+

@3

@x2@y

)
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for the quantities at the free surface z= � and

A01 = �
@
@x

− 1
15
�3
(
@3

@x3
+

@3

@x@y2

)
; A02 = �

@
@y

− 1
15
�3
(
@3

@y3
+

@3

@x2@y

)

B0 = 1− 2
5
�2
(
@2

@x2
+
@2

@y2

)

C11 = 1− c�2 @
2

@x2
; C21 =−c�2 @2

@x@y
; C12 =C21; C22 = 1− c�2 @

2

@y2

C13 = �
@
@x

− s�3
(
@3

@x3
+

@3

@x@y2

)
; C23 = �

@
@y

− s�3
(
@3

@y3
+

@3

@x2@y

)
for the bottom boundary, i.e. the seabed z=−h.
The utility velocity components û and ŵ could be solved from Equation (9) in terms of Ũ

and �. Having solved the utility variables, the vertical velocity at the free surface, w̃, can be
computed from the Boussinesq formulation Equation (6), i.e.

w̃=A1ŵ − B11û− B12v̂ (10)

which is used to close the governing equations and forms the time stepping problem for the
fully nonlinear free surface boundary conditions, Equations (1) and (2).

3. NUMERICAL METHOD

This section discusses various aspects of the numerical method used in the proceeding for
solving the previously outlined system of PDEs. The system of PDEs is solved using a mesh-
less least square-based �nite di�erence method, and the numerical code is programmed in
FORTRAN 90 with double precision.

3.1. Principle of the least square-based �nite di�erence method

To obtain an explicit di�erence formulae, the in�uence polynomial is introduced in the same
way as reported in Reference [11]. In general, we need m=(q + 1)(q + 2)=2 coe�cients to
determine the qth-order polynomial

Pq(x; y)= a1 + a2x + a3y + a4x2 + a5xy + a6y2 + · · ·+ am−1xyq−1 + amyq (11)

Let Pq;i(x; y) be the in�uence polynomial of order q. The value of the in�uence polynomial
at nodal point i is

Pq;i(x; y)=

{
1 (xj; yj) if i= j

0 (xi; yi) if i �= j
(12)

where nodal point j is in the same element as nodal point i. The in�uence polynomials serve
the same role as the shape functions in the �nite element method, but used in a quite di�erent
context.
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Figure 1. Distribution of the computational nodes.

We must �rst decide which points we want to include in the approximation. Instead of
selecting m appropriate points from the m+r surrounding nodes (including the centre node) in
the element through the Gauss–Jordan algorithm approach [11], all the m+r−1 nearest nodes
to the centre node (as the stars shown in Figure 1) are chosen to determine the m polynomial
coe�cients by the least square approximation. Herein, r is the number of additional nodal
points.
To determine the coe�cients of each in�uence polynomial Pq;i(x; y), we put the node

coordinates xj and yj of the selected m+ r nodes around the centre points i into the function
Pq;i(x; y) which forms a linear system of order m+ r but with m unknowns:

M(m+r)×mAm×(m+r) = Im+r (13)

where Im+r is (m+ r)-by-(m+ r) identity matrix and matrix M is

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1 x21 x1y1 y21 · · · yq1

1 x2 y2 x22 x2y2 y22 · · · yq2

...
...

1 xm+r ym+r x2m+r xm+rym+r y2m+r · · · yqm+r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(14)

This linear system could be solved with the least square method.
When solving the coe�cients of the in�uence polynomials, the local matrix M will become

singular or ill-conditioned for inversion if too few additional nodal points are included. This
drawback is not easy to remove because little is known about the e�ects of node distribution
on the conditioning of the local matrix. In the numerical simulation, this can be done by a
trial-and-error process. In the present work, the least square technique allows an optimized
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approximation, derived from an over-determined set of equations. The resultant coe�cient
matrix has good properties such as positive and de�nite. More details are given in Section 4.1
for appropriate choices of the number m+ r.
With the in�uence polynomial we immediately have an interpolating polynomial for the

m+ r node values fi. The discretized expression of the local function fd is

fd :=Pq(x; y)=
m+r∑
i=1
f(xi; yi) ·Pq;i(x; y) (15)

The operation on the in�uence polynomial is needed for building the di�erence formulae,
e.g. fx:

fx;d :=
@Pq(x; y)
@x

=
m+r∑
i=1
f(xi; yi)

@Pq;i(x; y)
@x

(16)

The determination of other derivatives is analogous and the general formulation could be
expressed as

@m+nfd(x; y)
@xm@yn

=
m+r∑
i=1
f(xi; yi)

@m+nPq;i(x; y)
@xm@yn

(17)

Since these in�uence polynomials depend only on the geometric position of the nodes, the
coe�cients of the in�uence polynomial need to be evaluated at the very beginning of the
numerical computation or at the time when mesh re�nement is necessary.

3.2. Weighted least square method

To increase the in�uence of the surrounding nodes which are close to the centre node, the
following weight function multiplies on each row of the in�uence polynomial matrices M
and I , i.e. Equation (13).

w(si)=1− 6s2i + 8s3i − 3s4i (06 si6 1) (18)

where si is the distance between the selected node i and the centre node normalized by the
largest distance value in the same element. The weighted least square problem becomes

M (w)
(m+r)×mAm×(m+r) = I

(w)
m+r (19)

where matrix M (w) is

M (w) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

w(s1) w(s1)x1 w(s1)y1 · · · w(s1)y
q
1

w(s2) w(s2)x2 w(s2)y2 · · · w(s2)y
q
2

...
...

w(sm+r) w(sm+r)xm+r w(sm+r)ym+r · · · w(sm+r)y
q
m+r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(20)

and the diagonal elements of I (w) becomes w(si), i=1; m + r. It is called a weighted least
square method in this paper. To obtain a better accuracy, we can tune the weight function.
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Figure 2. Node distribution (left) and surface of function f(x; y)= cos (kx) cos (ky) (right) with k =�=8.
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Figure 3. Comparison on the absolute error of each nodes versus the distance to the centre node.

However, the weight function Equation (18) gives a rather good performance in the present
work.
To investigate the e�ects of the weighted least square method, the following numerical

experiment is carried out. The local node system is illustrated in the left panel of Figure 2,
the actual position of each node is given in the appendix for easy reference. To examine the
e�ect of the weighted least square method quantitatively, let f(x; y)= cos (kx) cos (ky) with
k=�=8. The exact surface of function f is plotted in the right panel of Figure 2. Now let
us estimate the reconstructed function value at the node position using Equation (15); the
absolute error |fd−f| versus the distance to the centre node is plotted in Figure 3. When the
weighted least square method is used, it is seen that the absolute error is much smaller for
most nodes in Figure 3 except a few nodes far away from the centre node (i.e. r∼1). The
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Table I. Comparison on the estimated function derivatives by interpolation, k =�=8.

f fx fxx fxy fxxx fxxy

Exact 1 0 −0:1542 0 0 0
Without w(s) 1.0000 0:7174e− 5 −0:1531 −0:0319e− 6 −0:5989e− 3 −0:5097e− 4
With w(s) 1.0000 0:3226e− 5 −0:1532 0:0344e− 6 0:3888e− 3 0:6574e− 4

reconstructed function value, as well as the derivatives by the interpolation basis, are listed in
Table I for the cases without or with the weighted function w(s). From the comparison, better
estimated derivative values are obtained when applying the weighted least square method.
To provide more �exibility on the choice of m+ r, as well as improve the accuracy, the

node position is disturbed for a small magnitude o� its original location obtained from grid
generation software. This technique is studied in Reference [15] in which it is used to improve
the �nite di�erence accuracy. For an extreme example, if the nodes in an in�uence domain
are collinear, the in�uence coe�cient matrix may become singular and no solution could be
obtained. With the nodes disturbing technique, the value of m + r could be reduced a little
without assembling an ill-conditional matrix. For implementation, two random parameters are
generated for each node, one for the magnitude of the disturbance and the other one for
the angular degree of rotation. From the numerical test cases we have carried out, a small
disturbance at the order 1% of the local node-to-node distance gives satis�ed performance.

3.3. Boundary conditions

In the numerical solution of any system of PDEs appropriate boundary conditions must be
speci�ed. Regarding the wave problem, a wave-maker zone is necessary to generate the spec-
i�ed incident waves. A sponge layer is applied at the open boundary to completely absorb the
out-going waves. Both the wave maker and wave absorber could be set up with the concept
of a relaxation zone, which has been veri�ed to be a valid approach [12]. Generation and=or
absorption of waves is achieved by simply de�ning a relaxation coe�cient 06 cr(x; y)6 1,
and an exact desired solution �(e) and Ũ(e). At every time step of the calculation, the solution
in the relaxation zone is updated by

f(x; y; t)= crf(x; y; t) + (1− cr)f(e)(x; y; t) f= � or Ũ (21)

With this technique, the sponger layer and wave-maker could be obtained by setting f(e) to
be zero and the desired incident wave quantities, separately. This treatment is quite e�ective,
as is demonstrated in the formation of standing waves in the next section.
With almost perfect wave maker and absorber, the still-water level will be maintained at

the boundaries. Therefore, a symmetry boundary condition or a re�ection boundary could
be applied at these boundaries. The re�ection boundary is imposed by �ipping the selected
nodes versus the local boundary evenly or oddly depending on the physical process. Figure 4
illustrates the implementation of this boundary condition. The ghost points (shown in stars)
are distributed outside of the approximate boundary (the dash–dot line) by re�ecting the
interior points (shown in hollow squares). For a small curved boundary, the o�set between
the approximate boundary and the real boundary (the solid line) is small and satisfactory
results could be obtained, as discussed in Section 4.2. For a boundary with large curvature or
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Figure 4. Approximation of the treatment of the general curved boundary.

sharp corner, the interior nodes are �ipped for both boundaries. The di�erence coe�cients are
computed from the composite system using both the computational nodes and ghost nodes.
This strategy has the advantage of keeping the overall model structure regular, as all the nodes
in the computation domain could be treated in the same way.
The classical 4th-order, four-stage explicit Runge–Kutta method is used for time integration

of the time stepping problem, Equations (1) and (2).

3.4. Grid generation and reordering technique

The nodal points are produced by the grid generation software Gambit (Fluent Inc.). The node
indices need to be reordered after the selection of the appropriate nodes in the element to
reduce the linear system bandwidth. When solving sparse systems, the triangular factors of the
matrix M are also sparse. Indeed, if M has a band of width p and can be decomposed into
LU, then both the triangular factors L-matrix and U-matrix are banded with bandwidth p. The
bandwidth of the matrix is related directively to the computational e�orts. The decomposition
algorithm requires O(np2) operations, where n is the matrix dimension. As a matter of fact, a
decomposition method applied to a sparse matrix without caring about its structure can lead
to a substantial �ll-in, i.e. generate a considerable number of new non-zero elements, which
results in increasing storage and computational e�ort.
The reverse Cuthill–McKee ordering is frequently used when a matrix is to be re-numbered

to reduce the bandwidth. This is discussed in Reference [16].
Figure 5 illustrates the sub-matrix structure of the coe�cient matrix with and without

reverse Cuthill–McKee reordering in the square region with 13 nodes on each side and a
total of 218 nodes in the computation domain. The sparsity pattern, i.e. the position of the
non-zero elements, of the sub-matrix of M (e.g. A11 − �xB11) is plotted as a dark square
in Figure 5. This pattern indicates whether one element of the matrix is a non-zero value or
not, but not the value itself. Applying the reverse Cuthill–McKee reordering, the position of
the non-zero elements are changed in each row and column, while the value of the element
does not change in this process. The positions of the non-zeros become closer to the matrix
diagonal. Consequently, the bandwidth of the matrix is reduced.
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Figure 5. Comparison on the distributions of non-zero elements in the coe�cient sub-matrix, with (right)
and without (left) reverse Cuthill–McKee reordering: 218× 218.
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Figure 6. Comparison on the distributions of non-zero elements in the full coe�cient matrix, grouping
the discrete equations by PDEs (left) and nodes (left).

It is seen that the reverse Cuthill–McKee reordering results in a much smaller bandwidth
even in this simple test case. This kind of reordering technique could dramatically reduce
the sub-matrix bandwidth from order O(N ) to O(m + r) when a large computational do-
main is involved, and N is the total number of nodes. It should be noted that the reverse
Cuthill–McKee reordering should be re-calculated when changing the selected node number
in one element, even when the node positions are not changed.
As indicated by Equation (9), the full matrix to be solved is a 3× 3 block matrix, and

the aforementioned reordering is based on the sub-matrix. Although the sub-matrix has been
diagonalized by reordering the node index, the full matrix is far from diagonally dominant as
shown in the left panel of Figure 6. Before solving the linear systems, reordering the unknowns
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is conducted to reduce the matrix to be a diagonal-like matrix. This can be accomplished by
simply changing the unknowns from PDEs-order

[û1 û2 · · · ûN v̂1 v̂2 · · · v̂N ŵ1 ŵ2 · · · ŵN ]T (22)

to nodes-order

[û1 v̂1 ŵ1 û2 v̂2 ŵ2 · · · ûN v̂N ŵN ]T (23)

The full matrix is assembled according to the reordered unknowns. The iteration could greatly
bene�t from this simple operation due to the signi�cant reduction of the bandwidth; the
structure of the sparse matrix is shown in the right panel of Figure 6.

3.5. Solution of the sparse matrix

Two kinds of iteration methods are considered in present work. GMRES may be the most
interesting method for the iterative solution of a large, sparse, non-symmetric matrix. Recently,
Bi-CGSTAB as a variant of Bi-CG has been proposed for solving non-symmetrical linear
systems, and its attractive convergence behaviour has been con�rmed in many numerical
experiments. For the cases studied so far, no signi�cant di�erence could be found between
these two kind iterative schemes. The necessary memory for a GMRES method is about
O(17N ) while it is only O(8N ) for Bi-CGSTAB method, where N is the order of the linear
system. On account of the practical application where large memory is needed, Bi-CGSTAB
method is preferred in our work. All of the computations presented in this paper based on
this iteration method.
The key to the e�cient solution of the large-scale linear systems lies in e�ective precondi-

tioning. The e�ciency of various preconditioners was studied in Reference [14] for the solu-
tion of the high-order Boussinesq equation on a rectangular mesh. The ILUT preconditioner
works quite well in shallow to intermediately deep water. SPARSKIT developed by [17] is
used to solve the sparse linear equations in the present work. As a lower-storage method, the
incomplete LU factorization with dual truncation mechanism is applied in each sub-time-step
in the time integration.

4. MODEL VERIFICATION

4.1. Convergence tests

The simplest model in applied mathematics and mechanics is a linear system. It is also by
far the most important, and we begin our tests with the linearized Boussinesq equations and a
linear wave to gain insight into the accuracy and convergence of the numerical method. The
oscillation of a linear standing wave in a square basin is considered with the initial conditions

�(x; y; 0)=
H
2
cos kx cos ky and Ũ(x; y; 0)=0 (24)

where H is the wave height, and k is the wave number in each directions. The nonlinear
terms are switched o� for comparison against the exact solution. For a linear problem, the
velocity components Ũ are the same as the still-water velocity, and the exact solution of the
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problem could be obtained by multiplying cos(!t) on the initial condition for the free surface
elevation. The horizontal dimension of the basin is 100 m× 100 m and the water depth is
10 m. To form the steady standing wave, a linear wave of length 100 m and wave height of
1 m is chosen as an initial condition. From the linear dispersion relation, the period of the
input wave is 7:99 s.
Firstly, the space convergence is considered. It is hard to measure the node-to-node distance

for it is a non-structured method. The grid generation software gives a nearly equilateral
triangular mesh; hence, we can roughly estimate the node-to-node distance � by considering
the space step at the basin edge. Five mesh set-ups are generated with 31, 41, 61, 81 and 161
nodes at each edge. The corresponding � could be roughly estimated as 3.3, 2.5, 1.67, 1.25
and 0:625m. The notation s.p.p. denotes the time step per period in the following tables. The
Euclidean norm of the approximation error l2 reported in this paper is computed by

l2 =
1
N

√
N∑
i

(
�i − �exacti

H

)2
(25)

where N is the total number of nodes. The l2 error measures the averaged relative error over
the computation domain. The Cauchy convergence rate is estimated by

log(l(1)2 =l
(2)
2 )= log(�

(2)=�(1)) (26)

The error estimates are carried out at a time after �ve wave periods of oscillations.
We have tried the case where there are only 21 nodes at one edge; however, the numerical

code breaks down. It implies that we need enough nodes in one wavelength to resolve the
wave. From the numerical test cases, it seems that number of 20 nodes in one dominant
wavelength is the lower limit, which corresponds to the case of 31 nodes on one edge, as
there are wave components in both perpendicular directions. The �rst conclusion from the
convergence tests is that the number of selected surrounding nodes has a large impact on
the accuracy. It seems there is a minimum relative error at the region around m+ r equal to
30 and 40 and for q is 3 and 4, as shown in Tables II and III. In this case, the 3rd-order
polynomial has m=10 coe�cients, and an additional r=20 nodes are added to form the
least square coe�cient matrix. When the value of m + r increases, the accuracy decreases
because more nodes in one element will cause more dissipation. However, we cannot select
too few surrounding points r otherwise a singularity will occurs when solving the in�uence
coe�cients, especially when the weight function has a rapid decay. In the numerical test
cases, the space convergence rate is about 1.5–2 for most cases. This is reasonable because
the 1st-order derivative di�erence should have a higher accuracy while the 2nd- and 3rd-order
derivatives are lower under the selected order of polynomial approximation. Finally, a choice
of 30 nodes per element has an overall best performance on the bases of the accuracy and
computational expense when the 3rd-order polynomial is used. Nearly the same performance
occurs for the case of q=4. Comparing the choice of q=3 and 4, no obvious advantage
could be found for the accuracy with the time and space step at the order of O(10) per
wave period and wavelength. When taking the time and memory expense into account, the
3rd-order polynomial approximation gives an overall better performance.
Secondly, the time convergence is considered. The number of nodes 30 and 40 are chosen

for the 3rd- and 4th-order polynomials. With regard to practical applications, choosing about
20 and 40 nodes in one dominant wavelength is acceptable and appropriate for linear and
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Table II. Space convergence of the 3rd-order in�uence polynomial element.

Nodes number m+ r

25 30 35

s.p.p. Size l2 (e− 3) order l2 (e− 3) order l2 (e− 3) order

31 11.81 9.961 12.63
41 8.307 1.223 6.749 1.353 9.189 1.106

40 61 4.138 1.719 3.350 1.727 5.523 1.256
81 2.740 1.433 1.926 1.924 3.320 1.769
161 0.245 3.483 0.102 4.239 0.334 3.313

31 10.41 8.560 10.86
41 7.068 1.346 5.563 1.498 7.676 1.206

80 61 3.312 1.870 2.724 1.761 4.486 1.325
81 2.296 1.274 1.481 2.118 2.588 1.912
161 0.251 3.193 0.111 3.738 0.243 3.413

31 8.903 7.278 9.111
41 6.008 1.367 4.619 1.580 6.333 1.264

160 61 2.642 2.026 2.208 1.820 3.589 1.401
81 1.794 1.346 1.104 2.409 1.964 2.096
161 0.274 2.711 0.135 3.032 0.126 3.962

Table III. Space convergence of the 4th-order in�uence polynomial element.

Nodes number m+ r

30 40 60

s.p.p. Size l2 (e− 3) order l2 (e− 3) order l2 (e− 3) order

31 7.825 9.495 13.47
41 5.245 1.391 6.923 1.098 10.79 0.771

40 61 4.322 0.477 4.044 1.326 7.420 0.923
81 2.830 1.472 2.728 1.368 5.108 1.298
161 0.820 1.787 0.748 1.867 1.994 1.357

31 6.289 7.340 10.27
41 4.103 1.485 5.208 1.193 7.900 0.912

80 61 3.461 0.420 2.956 1.397 5.146 1.057
81 2.207 1.564 1.943 1.459 3.400 1.441
161 0.609 1.858 0.526 1.885 1.282 1.407

31 5.135 5.454 7.493
41 3.362 1.472 3.684 1.364 5.311 1.196

160 61 1.738 1.627 1.916 1.612 3.060 1.360
81 0.990 1.956 1.160 1.744 1.833 1.780
161 0.379 1.385 0.240 2.273 0.532 1.785
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Table IV. Comparison on the time convergence.

q Time step per period

m+ r 40 60 80 160 320 640 1280 2560

3 l2 (e− 3) 6.749 6.032 5.563 4.617 3.901 4.088
30 order 0.277 0.281 0.269 0.243 −0:068

4 l2 (e− 3) 6.923 5.853 5.208 3.684 2.269 0.942 0.552 1.662
40 order 0.414 0.406 0.499 0.699 1.268 0.771 −1:590

Table V. The time convergence with the 4th-order polynomial element.

Time step per period

Size 40 60 80 100 160 320 640 1280

61 l2 (e− 3) 4.044 3.398 2.956 2.618 1.916 0.884 0.218 1.322
order 0.429 0.484 0.544 0.664 1.116 2.020 −2:600

81 l2 (e− 3) 2.728 2.261 1.943 1.693 1.160 0.361 0.495
order 0.463 0.527 0.617 0.804 1.684 −0:455

nonlinear wave simulations, respectively. The results of the convergence tests are shown in
Table IV. For comparison, the choice of a very �ne time step, e.g. 320 and 640, etc., was
tested as well to investigate the �nal convergence rate. The numerical results imply that the
convergence rate could reach up to 1 for those very-�ne time step, while it is around 0.3
and 0.4 for the two selected polynomial function when choosing the same order of both the
time step per wave period and space step per wavelength. To further investigate the temporal
convergence of the present numerical method, a high space resolution for q=4 are studied and
the numerical results are shown in Table V. In this circumstance, the convergence rate could
reach up to 2. These results indicate that we cannot improve the time convergence rate when
the space resolution is not �ne enough. It is generally well known that the time convergence
and space convergence are coupled for time-relating PDEs. When further decreasing the time
step, the l2 error may increase, e.g. the case tested by 640 time step with 81 nodes in the
edge, which is thought to be the accumulation of the discretization error.
Thirdly, the higher-order in�uence polynomials are considered for q=5 and 6. The exten-

sion of the in�uence polynomial is straightforward. When the order of the in�uence polyno-
mial increases, more surrounding nodes need to be included in the �nite di�erence element
to meet the demands of both the necessary polynomial and least square approximation. From
the results of numerical experiments, shown in Tables VI and VII, increasing the in�uence
polynomial order has not notably improved the numerical accuracy, e.g. the smallest value
of l2 is 2.728 for 4th-order polynomial but 4.107 and 4.063 for 5th- and 6th-order with the
same time step s.p.p. 40 and size 81. Given the polynomial order q, the accuracy decreases
when the surrounding node number increases. Fixing the surrounding node number m+ r, the
accuracy decreases as increasing the polynomial order. One possible reason may be the fact
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Table VI. The convergence with the 5th-order in�uence polynomial element.

Node number m+ r

50 60 80

s.p.p. Size l2 (e− 3) order l2 (e− 3) order l2 (e− 3) order

41 8.522 9.664 10.39
40 61 5.765 0.964 7.092 0.763 8.126 0.606

81 4.107 1.179 5.039 1.188 6.386 0.838

41 6.206 6.942 7.528
80 61 3.999 1.084 4.779 0.921 5.461 0.792

81 2.699 1.367 3.223 1.369 4.044 1.044

Table VII. The convergence with the 5th-order in�uence polynomial element.

Node number m+ r

50 60 80

s.p.p. Size l2 (e− 3) order l2 (e− 3) order l2 (e− 3) order

41 9.187 9.958 10.64
40 61 5.535 1.250 7.140 0.820 8.472 0.562

81 4.063 1.075 4.994 1.243 6.489 0.927

41 6.955 7.277 7.647
80 61 4.151 1.273 5.035 0.908 5.764 0.697

81 2.922 1.220 3.380 1.385 4.207 1.095

that the large di�erent element will introduce more numerical dissipation. With the viewpoint
of practice applications, a high-order polynomial model will result in the rapidly increasing
computational expense without improvement the accuracy. This is not a promising numerical
model for engineering applications. Consequently, the higher order polynomial approximations
are abandoned in the present work.

4.2. Boundary �tting mesh

One of the most important advantages of the mesh-less method is the ease of implement for
an irregular coastal boundary. In this section, simulation of a Gaussian hump oscillating in a
circular tank is conducted to illustrate this property.
Considering a circular tank with radius R=50 m, the water depth is 10 m. The still water

is located at the xoy plane and with the z axis upward. The initial condition is given by
a motionless Gaussian hump of water with its centre located at the origin of the basin as
Equation (27)

�(x; y; 0)=Exp(− 1
100 (x

2 + y2)) (27)
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Figure 7. Top view of the still-water velocity �eld (left) and the surface elevation (right) at T =40 s.
In the left panel, the length of the vector indicates the velocity magnitude, and the colour represents

the surface elevation in the right one.

The average node-to-node distance is 1 m. The time step is 0:1 s. After 40 s during which
the hump oscillates around 8 times, the still-water level �eld and surface elevation are shown
in Figure 7. A good circumferential symmetry property has been obtained with the present
boundary treatment as shown in Figure 7, which veri�es the e�ectiveness of the boundary
implementation.

4.3. Wave-maker and sponger

To test the capability of the relaxation technique, the re�ection of a nonlinear stream-function
wave and formation of nonlinear standing wave are studied. The wave tank covers a length of
800m and a width of 20m. The water depth is 5m and the length and height of the incident
wave is 100m and 0:5m, separately. The average node to node distance � is about 1:5m by
Gambit and total number of nodes is 8848. The time step of the computation is 0:2 s. The
selection node number m+ r equals 30 and the polynomial order is q=3 in this test case.
Figure 8 demonstrates the snapshots of surface elevation in one period of simultaneous wave

generation and absorption from a relaxation zone at the centreline of the numerical wave tank.
A nonlinear incident wave is speci�ed at the left-hand boundary using a relaxation zone of
one wavelength. The second relaxation zone covers another wavelength x∈ [−300;−200] to
absorb the re�ection wave from the computational domain. The right-hand boundary is a
vertical wall. The steady-state results in a perfect standing wave outside the relaxation zone,
i.e. the region of x∈ [−200; 400]. In general, the absorbing of shallow water waves needs a
long relaxation zone. In this test case, the incident wave belongs to the shallow water wave
(kh=�=10). For intermediate water waves, about half of the wavelength is enough for the
relaxation zone by appropriately adjusting the relaxation function cr(x; y).

4.4. Nonlinear wave shoaling

The experimental results in Reference [18] are used extensively in the literature to demon-
strate the numerical wave models involving nonlinear refraction and di�raction (see, e.g. Ref-
erences [14, 19]). The topography connects deep- and shallow-water regions with a shoaling
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Figure 8. Nonlinear standing wave envelope in �at bottom �ume.

region acting as a concave lens, and is described by

h(x; y)=

⎧⎪⎪⎨⎪⎪⎩
0:4572 if 06 x¡10:67−G
0:4572 + 1

25 (10:67−G − x) if 10:67−G6 x6 18:29−G
0:1524 if 18:29−G¡x6 27

(28)

where

G(y)=
√
y(6:096− y) (29)

The gradient of h is calculated analytically as input when building the bottom boundary con-
dition Equation (4). Because the bathymetry is symmetrical about the centreline y=3:048m,
only the half of the domain is simulated. For waves of T =2 s, the wavelength is about 3.89
and 2:40m in the deep-water and shallow-water part, respectively. Four meshes with approx-
imately 31, 41, 49 and 61 nodes per wavelength, are generated for computation with Gambit.
The total number of nodes in the computational domain are 10041, 16621, 24922 and 34591,
respectively. The time step is �xed to be �t=T=50, and simulations run for 1200 time steps
to ensure the steady state for the harmonic analysis.
Almost identical results for the 1st-order harmonic are obtained with the mesh at these

scales, as shown in Figure 9. These results are the relative amplitudes of harmonics along
the centreline at y=3:048m. The harmonic analysis was done for the time series of surface
elevation from the last 500 time steps. For the coarsest mesh, i.e. 31 nodes per wavelength,
the 2nd- and 3rd-order harmonics are slightly under-predicted when comparing the conver-
gent harmonic magnitude, which is believed to be related to the mesh resolution and the
numerical damping. If there are 31 nodes in one wavelength for the 1st-order harmonic,
then there are only about 11 nodes per wavelength for the 3rd-order harmonic. When the
resolution is increased, say 41 nodes per wavelength, almost convergent results could be
obtained.
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Figure 9. Comparison on the harmonic amplitude distribution with various
space resolution: q=3; m+ r=30.
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Figure 10. Computed and measured harmonic amplitudes for simulations modelling the experiments of
Reference [18] with the 49 nodes per wavelength mesh: q=3; m+ r=30.
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Figure 11. Instantaneous surface elevation with the mesh of 49 nodes per wavelength: q=3; m+r=30.

Comparisons between the numerical results with the 49 nodes per wavelength mesh and
experimental results are presented in Figure 10. The match with the experimental data is good,
and compares well with other numerical results in the literature. The focusing of the waves
can be seen in Figure 11 shown as instantaneous surface elevation, in which the surface has
been projected to a coarse rectangular mesh for clarity.
We remark that these results are preliminary and by no means comprehensive. They are

merely to show the capability of the method itself and investigate the performance of the
numerical model. In further work, we hope to study more problems involving complex bound-
aries which could not or are not easily solved in a rectangular mesh with traditional �nite
di�erence method.

4.5. Computational e�ciency of the sparse matrix solver

During the ILUT preconditionor’s factorization, each row of the L-matrix and U-matrix will
have a maximum of i�llin elements (excluding the diagonal element). Comparing of i�llin is
conducted to investigate the computational expanse for both the CPU time and memory. The
numerical code is compiled with Intel Fortran 90 compiler (Version 7.0). The machine is a
Linux Redhat 9.0 platform with 1024 MB RAM and Intel(R) Pentium(R)-4 CPU of 2:40GHz.
The details of the computer resources used are listed in Table VIII. The convergence criteria
is chosen as ‖residual‖61:0E − 20‖rhs‖ for the iterative solver, and the threshold for the
�lling element magnitude takes the value of 1:0E− 9.
The term Iter. represents the iteration numbers of each sub-time-step, and the value of

CPU is the time used at each time step. The comparison results shown in Table VIII could
give us a brief idea on the choice of i�llin value. The size of i�llin will signi�cantly af-
fects the iterations of the linear solver especially for a large-scale sparse matrix, e.g. the
case of i�llin=10 for �ne mesh in Table VIII. The iterate number drops down signi�cantly
when the i�llin number increases. However, the major time cost spent on the ILUT precon-
dition of the coe�cient matrix, which needs to be run at every sub-time-step during the time
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Table VIII. Summary of the in�uence i�llin on the computational expanse, q=3, m+ r=30.

Coarse mesh : 16621 nodes Fine mesh : 24922 nodes

i�llin Iter. CPU (s) RAM (MB) Iter. CPU (s) RAM (MB)

10 56–68 18 195 196–216 90 411
20 32–34 24 208 64–68 82 425
30 18–20 39 216 32–34 108 451
60 10–12 81 253 14–16 259 508

integration. If the larger value of i�llin is chosen, the precondition matrix will become dense
and more physical memory is needed; it will increase the calculation burden on the ma-
trix and vector multiplication during iteration process. This conclusion can be easily checked
when comparing i�llin=30 and 60 for both the coarse and �ne mesh cases. Although the
iteration steps are reduced, the CPU time and memory used do increase. How to balance
the two aspects on the choice of i�llin depends on the problem itself as well as the node
optimization. For the test cases in our experience, it seems that the choice of i�llin that is
about equivalent to m + r gives the best overall performance or e�ciency. The appropriate
preconditioned method as well as other kinds of iteration scheme may provide signi�cant
acceleration on the solver of the present numerical model, which is under investigation in
our work.

5. CONCLUSIONS

A new mesh-less least squares-based �nite di�erence method has been developed to numeri-
cally solve the fully nonlinear and highly dispersive Boussinesq wave model. Details on the
implementation are presented, especially for the techniques used to improve the e�ciency.
Various in�uence polynomials and the node numbering in each element are discussed. The
numerical results imply that the choice of a 3rd-order in�uence polynomial is the best one
regarding e�ciency. While the size of the element has a large in�uence on the numerical dis-
sipation, 30 surrounding nodes are appropriate for 3rd-order polynomial element. Comparisons
between the present model and the experimental data are carried out. Good agreement was
obtained, which proves the e�ectiveness of the present numerical model. More veri�cations
involving complex geometric boundaries are in progress and the results will be published
elsewhere.
Finally, we emphasize that the numerical method presented in this paper is by no means

limited to the fully nonlinear Boussinesq equations. For some purposes it may be more
attractive to use a depth-averaged Boussinesq model, e.g. References [4, 5], in which cases
the computational e�ort will be reduced as they could be solved with an explicit scheme or
semi-explicit scheme; no large linear system is involved. Furthermore, large-scale wave mod-
els, such as the nonlinear shallow water equations, the mild slope equation (both parabolic
kind and hyperbolic kind), etc., could be solved with the mesh-less least square-based �nite
di�erence method.
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Table AI. Locations of nodes.

ID x y ID x y ID x y

1 0.0000 0.0000 13 −0:0666 0.2441 25 0.1905 −0:0498
2 −0:3727 −0:3701 14 −0:3340 −0:1997 26 −0:0757 0.1058
3 0.3684 −0:3697 15 0.2231 0.3475 27 0.0729 0.3093
4 0.3698 0.3669 16 −0:3502 0.2276 28 0.3234 −0:0802
5 −0:3710 0.3741 17 −0:2279 −0:3501 29 −0:0812 −0:3149
6 −0:2017 0.1625 18 0.3523 −0:2241 30 0.1742 0.0910
7 0.1694 0.2197 19 0.1904 −0:3233 31 0.1052 −0:1657
8 0.2321 −0:1692 20 0.3255 0.1863 32 −0:3693 −0:0294
9 −0:1763 −0:2137 21 −0:2043 0.3416 33 −0:0396 0.3795
10 −0:1878 −0:0332 22 −0:3223 0.0857 34 0.0292 −0:3825
11 0.2799 0.0351 23 0.0505 0.1610 35 0.3859 0.0282
12 0.0388 −0:2717 24 −0:0462 −0:1684

APPENDIX A

The position of each node in Section 3.2 is given in Table AI.
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